Test Case
	ID/Title:
	Rational Class Usage

	Type:
	White Box

	For System:
	EZFrac

	Use Case:
	Input and output and math operations

	Prerequisites:
	Console executable running and in touch with the layout.

	Program Elements Listing:

	Element #
	Program Element Function/Purpose
	Program element type

	1
	tester – Demonstrates full range of functionality with objects of rational class, including I/O, special constructors, normalization, and overloaded operators.
	function: int tester()

	2
	calc – Takes in two-term rational expressions as a single string in the format “1/2+3/4”.
	function: int calc()

	3
	main – Allows user to choose among the tester, the calculator, and quitting.
	function: int main()

	4
	rational.h, rational.cpp – Header and implementation for rational class.
	files: rational.h, rational.cpp

	Program Element Tests:

	Element #
	Scenario
	Expected Result
	Actual Result

	1
tester
	Default constructor
	Rational of 0/1
	Verified. (toString function within rational masks /1, so the screen says 0)


	
	n/n constructor
	Rational of n/n, though n/0 attempts generate an error message and become n/1
	Verified.

	
	n/1 constructor
	Rational of n/1
	Verified. (Screen displays n.)

	
	Normalization
	Called on its own or as part of arithmetic operator output, returns fraction in its lowest equivalent terms.
	Verified.

	
	Less than (<)
	E.g.: 2/3 confirmed less than 7/8
	Verified.

	
	Greater than (>)
	E.g.: 2/3 deemed not greater than 7/8
	Verified.

	
	Equals (==)
	E.g.: 2/3 deemed not equal to 7/8
	Verified.

	
	Input (>>)
	Type “n/n”, get n/n rational, or type n, get n/1 rational; all combinations of minus signs work; a regex-powered routine stops and asks for a repeat input if it’s not a valid rational; Ctrl+C and Ctrl+Z both exit without throwing exceptions or looping endlessly.
	Verified.

	
	Output (<<)
	Every rational involved in the testing routine is output to the screen as a string in the form of “n/n”.
	Verified, verified, verified.

	
	Addition (+)
	E.g.: 2/3 + 7/8 = 16/24 + 21/24 = 37/24
	Verified.

	
	Subtraction (-)
	E.g.: 2/3 - 7/8 = 16/24 - 21/24 = -5/24
	Verified.

	
	Multiplication (*)
	E.g.: 2/3 * 7/8 = 14/24 = 7/12
	Verified.

	
	Division (/)
	E.g.: 2/3 / 7/8 = 2/3 * 8/7 = 16/21
	Verified.

	
	Divide by zero
	Displays error message, returns dividend unchanged.
	Verified.

	
	Ctrl+C
	Quit without misbehaviour.
	Does generate at “first-chance exception”, but only in the IDE. It’s doing what people expect it to do.

	
	Ctrl+Z
	End-of-file character detected, quit without misbehaviour.
	Statements after inputs force quit, as Ctrl+Z would disable subsequent inputs and easily cause infinite loops, unless Ctrl+Z were itself disabled.

	2
calc
	Quit
	Q or q quits to menu.
	Verified.

	
	String constructor (only used here)
	Makes rationals out of pieces of the input string. That string had to match a regular expression representing a valid [rational][operator][rational] sequence.
	Works.

	
	Adding
	Split input on “+” and + the resulting rationals.
	Calculate: 3+3
6

Calculate: 3+3/8
27/8

Calculate: 3/8+7/8
5/4

Calculate: 2/3+-1/3
1/3

Calculate: 7/8+2
23/8

	
	Adding overflow
	Ensure addition result will not exceed max_int in numerator. (Not possible in VS2010 with the current arrangement of limiting digits to 9.)
	Calculate: 999999999+999999999
1999999998

Calculate: -999999999+-999999999
-1999999998

	
	Multiplying
	Split input on “*” and * the resulting rationals.
	Calculate: 50*2
100

Calculate: 1/3*3
1

Calculate: 1/3*2/3
2/9

Calculate: 4/-3*2/4
-2/3

Calculate: -8/88*-1/2
1/22

Calculate: 7*7/9
49/9

	
	Multiplying overflow
	Ensure multiplication result will not exceed max_int in numerator or denominator.
	Calculate: 9999*9999
99980001

Calculate: 99999*99999
Sorry, this operation would cause an overflow. Returning your first argument unchanged.
99999

Calculate: -9999*9999
-99980001

Calculate: -99999*99999
Sorry, this operation would cause an overflow. Returning your first argument unchanged.
99999 (unexpected)
Calculate: 1/9999*1/9999
1/99980001

Calculate: 1/99999*1/99999
Sorry, this operation would cause an overflow. Returning your first argument unchanged.
1/99999


	
	Equals
	Split input on “=” and test equivalency of the resulting rationals.
	Calculate: 0=0
Testing if 0/1 = 0/1
Yes, it does!
True.

Calculate: 9=9
Testing if 9/1 = 9/1
Yes, it does!
True.

Calculate: 1/2=2/4
Testing if 1/2 = 2/4
Yes, it does!
True.

Calculate: -1/2=2/44
Testing if -1/2 = 2/44
I'm sorry, it doesn't.
False.

Calculate: -1/2=2/4
Testing if -1/2 = 2/4
I'm sorry, it doesn't.
False.


	
	Less than
	Split input on “<” and test if the first rational is less than the second.
	Calculate: 5/6<7/8
Testing if 5/6 < 7/8
Yes, it is!
True.

Calculate: 7/8<5/6
Testing if 7/8 < 5/6
I'm sorry, it isn't.
False.

	
	Greater than
	Split input on “>”and test if the first rational is greater than the second.
	Calculate: 9/10>8/9
Testing if 9/10 > 8/9
Yes, it is!
True.

Calculate: 8/9>9/10
Testing if 8/9 > 9/10
I'm sorry, it isn't.
False.
Calculate: 1/100>-99/100
Testing if 1/100 > -99/100
Yes, it is!
True.


	
	Division
	Split input on “/”s and / the resulting rationals. Can distinguish n/n and n/n/n/n, but in case of n/n/n, user has to be asked which of n/n / n and n / n/n is meant.
	Calculate: 6/2
3

Calculate: 7/8/9/10
35/36

Calculate: 2/5/3
Did you mean [1]: 2/5 divided by 3
or [2]: 2 divided by 5/3? 1
2/15

Calculate: 2/5/3
Did you mean [1]: 2/5 divided by 3
or [2]: 2 divided by 5/3? 2
6/5

Calculate: -9/3/1/3
-9

Calculate: 9/-3/-1/3
9


	
	Division overflow
	Ensure division result will not exceed max_int in numerator or denominator. Uses multiplication function, but with rearranged arguments.
	Calculate: 1/9999/9999/1
1/99980001

Calculate: 1/99999/99999/1
Sorry, this operation would cause an overflow. Returning your first argument unchanged.
99999 (Strange… at least it doesn’t affect the math.)


	
	Subtraction
	Split input on “-“s and - the resulting rationals. This is very complicated.
	Calculate: 3-3
0

Calculate: 3--3
6

Calculate: -3-3
-6

Calculate: -3--3
0

Calculate: 3/3-3
-2

Calculate: 3/3--3
4

Calculate: 3/-3-3
-4

Calculate: 3/-3--3
2

Calculate: -3/3-3
-4

Calculate: -3/3--3
2

Calculate: -3/-3-3
-2

Calculate: -3/-3--3
4
Calculate: 7-7/7
6

Calculate: 7-7/-7
8

Calculate: 7--7/7
8

Calculate: 7--7/-7
6

Calculate: -7-7/7
-8

Calculate: -7-7/-7
-6

Calculate: -7--7/7
-6

Calculate: -7--7/-7
-8
Calculate: 3/2-3/2
0

Calculate: 3/2-3/-2
3

Calculate: 3/2--3/2
3

Calculate: 3/2--3/-2
0

Calculate: 3/-2-3/2
-3

Calculate: 3/-2-3/-2
0

Calculate: 3/-2--3/2
0

Calculate: 3/-2--3/-2
-3
Calculate: -4/3-4/3
-8/3

Calculate: -4/3-4/-3
0

Calculate: -4/3--4/3
0

Calculate: -4/3--4/-3
-8/3

Calculate: -4/-3-4/3
0

Calculate: -4/-3-4/-3
8/3

Calculate: -4/-3--4/3
8/3

Calculate: -4/-3--4/-3
0
Time for: Sleep

	
	Subtraction overflow
	Ensure subtraction result will not exceed max_int in numerator. Uses addition function, but adds the negative of the subtrahend.
	Calculate: -999999999-999999999
-1999999998


	
	Divide by zero
	Returns dividend unchanged. 
	Calculate: 4/3/0/9
Error: Dividing by zero is undefined. Returning your dividend unchanged.
4/3

	
	Weird operator / rational sequences
	User is asked to try again.
	Calculate: 4-+2

Input failed! Please try again: 4/10---9

Input failed! Please try again: 4/2*/1/2

Input failed! Please try again: --2-43/3

Input failed! Please try again: 7++9

Input failed! Please try again: 4/3/2/1/9

Input failed! Please try again: 2/3*2
4/3

	
	Garbage characters
	User is asked to try again.
	Calculate: pqre

Input failed! Please try again: quit
(might not be so crazy to toss in another regex for this one)
Input failed! Please try again: 1234q/34-2

Input failed! Please try again: 23.1/64-7/3

Input failed! Please try again: 4/3*5
20/3

	
	Ctrl+C
	Quit without misbehaviour.
	Does generate at “first-chance exception”, but only in the IDE. It’s doing what people expect it to do.

	
	Ctrl+Z
	End-of-file character detected, quit without misbehaviour.
	Statements after inputs force quit, as Ctrl+Z would disable subsequent inputs and easily cause infinite loops, unless Ctrl+Z were itself disabled.

	3

main
	User choice
	1 – tester, 2 – calculator, 3 – quit
	Verified, though there is a quirk that if a key is pressed at “press enter to continue”, you’ll have to input an additional time.

	
	Ctrl+C
	Quit without misbehaviour.
	Does generate at “first-chance exception”, but only in the IDE. It’s doing what people expect it to do.

	
	Ctrl+Z
	End-of-file character detected, quit without misbehaviour.
	Statements after inputs force quit, as Ctrl+Z would disable subsequent inputs and easily cause infinite loops, unless Ctrl+Z were itself disabled.

	Notes:
1. Find out what’s wrong with returning the first value after it’s found that the operation would trigger overflow.
2. Consider making “quit” a valid exit command (and “exit” for that matter), and consider q / quit / exit variations for the main menu instead of numbers, as it’s inconsistent.


